
W A V E  E F F E C T S  IN A T W O - P H A S E  M E D I U M  

V. D.  V o r o n t s o v  UDC 532.529.5 

A wave equation der ived in the a r t i c l e  is used to obtain  a relat ion for the propagat ion velo-  
c i ty  of smal l  per turba t ions  in a two-phase medium.  This  relat ion is conf i rmed indirect ly  
by a compute r  analys is  of a w e t - s t e a m  nozzle, as  well  as exper imenta l ly .  

In the flow of a two-phase  medium, as  in the case  of a continuous medium,  c r i t i ca l  e f fec ts  take place 
in connection with the c h a r a c t e r i s t i c s  of the propagat ion of sma l l  per turba t ions .  

Many papers  have been published on the propagat ion veloci ty  of smal l  per turba t ions  in a two-phase  
medium (see the bibl iography in [1]). In the major i ty  of cases ,  however,  the initial a ssumpt ion  is invoked 
that  the following equation is valid in the two-phase  medium: 

dP 
C ~ -- (1) 

de 

In this case  the two-phase  medium is replaced by a nominal  continuum of densi ty p without any velo-  
ci ty different ia l  between the gaseous and liquid phases .  In prac t ice ,  as  for example  in the case  of wet 
s t e am flow in nozzles ,  the set t l ing of liquid drops f rom the vapor  is observed.  Consequently,  two dist inct  
veloci t ies  resul t :  the veloci ty  of the vapor  phase and the veloci ty  of the drops .  Moreover ,  inasmuch as  
relat ion (1) is deduced f rom an analys is  of the wave equation der ived for  a continuum, there  is no obvious 
just if icat ion for  its applicat ion to the two-phase  case .  I t  is sensible ,  the re fore ,  to cons ider  the propagat ion 
veloci ty  of smal l  per turba t ions  by analys is  of a wave equation der ived for  a two-phase  medium on the bas i s  
of the following assumpt ions ,  which a re  a lso  fundamental to all  ensuing a rguments  in the p resen t  a r t ic le .  

1. The rea l  two-phase  medium,  which cons is t s  of a d ry  sa tura ted  vapor  and liquid drops ,  is r ep l ace -  
able by a continuum consis t ing of a liquid phase having a nominal  densi ty  PL = m L / V  and a gaseous  phase 
hav ing  a nominal densi ty Pv =mv/V"  This  approach is not only admiss ib le  in the case  of drops  of equal  
d i a m e t e r  d is t r ibuted uniformly in space,  but a l so  in the p resence  of heterogeneous  drops  spaced at  un- 
equal d is tances .  In the la t ter  case  the in teract ion of the drops  and vapor  can be t r ea t ed  by the introduction 
of a cer ta in  ave rage  drop d iamete r .  

2. The flow of the two-phase  medium is a s sumed  to be steady.  The re fo re ,  at  e v e r y  point of space  
any var ia t ion of the drop veloci ty  re la t ive  to the vapor  is e l ic i ted sole ly  by the propagat ion of smal l  p e r t u r -  
bat ions.  

3. The var ia t ion of the mois tu re  content due to smal l  per tu rba t ions  is negligible. This  assumpt ion  
is fully justif ied,  because  the sma l l  per turbat ion  propagat ion veloci ty  depends on the iner t ia l  p rope r t i e s  of 
the medium,  i .e . ,  on the total  m a s s  of the vapor  and drops  in the analyzed volume.  

4. Due to the absence  of adequate exper imen ta l  data on the boundary layer  a s soc ia ted  with the flow of  
a two-phase  medium the motion is descr ibed  by a one-dimensional  model ,  and the influence of the walls is 
the re fo re  neglected.  

5. It is a s sumed  that the vapor  phase obeys the C lapey ron -C laus iu s  equation. The la t te r  is sa t is f ied 
for  a high mois tu re  content, i .e . ,  in the p resence  of a wel l -developed ove r - a l l  liquid phase sur face ,  which 
is conducive to nonrelaxing phase t rans i t ions .  This  assumpt ion  is supported in prac t ice  by the coincidence 
of the flow p r e s s u r e  and t e m p e r a t u r e  with the cor responding  p a r a m e t e r s  of the sa tu ra ted  vapor .  
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Fig.  1. Var ia t ion  of the n u m b e r  M (a) and the re la t ive  c r o s s  
sec t ion  f a long  a nozzle  (b) v e r s u s  the ef fec t ive  m o i s t u r e  con-  
tent  u" ,  m / s e c ,  for  d d = 1 - 1 0 - 4 m .  1) y =0.95;  2) 0.9; 3) 0.8; 
4) o.6. 

6. The liquid phase  is a s s u m e d  to be i n c o m p r e s s i b l e .  

F o r  the de r iva t ion  of our  wave equat ion [2] we c o n s i d e r  a sma l l  pe r tu rba t i on  s t imula ted  in the two-  
phase  med ium by  the d i s p l a c e m e n t  of v a p o r  p a r t i c l e s  o v e r  a d i s tance  l (X, t) and, as  a resu l t ,  the d i sp l ace -  
men t  of the d rops  by an amoun t  S(X, t) (in re la t ive  motion) .  Then a l aye r  of the m e d i u m  of th i ckness  AX 
occup ies  a new posi t ion  with c oo rd i na t e s  X +/(X, t) and X +AX +/(X +AX, t). The p r e s s u r e  in this  case  
changes  by an amount  Pc  = P v - P 0 ,  and the dens i ty  of the med ium by  an amount  Pvc =Pv  - P0, where  the 
s u b s c r i p t  0 r e f e r s  to the ini t ia l  s ta te .  Due to the s m a l l n e s s  of Pc and Pvc it m a y  be a s s u m e d  that  Pc  = KPvc '  
w h e r e  K = (dP/dPv) 0. 

Since the m a s s  of the v a p o r  in the l a y e r  of th ickness  AX does  not change,  we can wr i te  the following 
with r e s p e c t  to unit a r e a  p e r p e n d i c u l a r  to the X axis :  

9v05X = Pv [X -,~ AX + I ( X - - A X ,  t ) - - X - -  l(X, t)]. (2) 

I n a s m u c h  as  AX, is  smal l ,  neg lec t ing  s e c o n d - o r d e r  sma l l  quant i t ies  and ins t i tu t ing sui table  t r a n s -  
fo rma t ions ,  we obtain 

Ol (3) 
Pvc - - -  Pro - - .  8X 

Next we c o n s i d e r  the fo r ce s  ac t ing  on the vapor  l aye r  of th ickness  AX. Due to the s m a l l n e s s  of the 
la t te r  r e su l t an t  p r e s s u r e  is  

0P 
Rf = P(X,  t ) - - P ( X  + aX, t )= AX. 

OX 

Recogn iz ing  that  X depends  only on Pc ,  we obtain 

R f =  - - 0 P c  AX. 
OX 

(4) 

It is  c l e a r  tha t  the r e su l t an t  p r e s s u r e  m u s t  be equa l ized  by  the ine r t i a l  f o r c e s  of the m a s s  of the 
v a p o r  phase  and the m a s s  of the liquid conta ined in the l aye r  AX. T h e r e f o r e ,  taking re la t ion  (3) into a c -  
count,  we f inal ly  have 

02---J--I : K O~l PLoL O~S -. (5) 
Ot 2 OX ~ pv 0 Ot ~ 

This  equat ion is an inhomogeneous  wave equat ion val id for  a two-phase  med ium.  As we know, i t d o e s  
not admi t  a solut ion in the f o r m  of an a r b i t r a r y  t r a v e l i n g  w a v e f o r m ,  so  that,  expanding the sma l l  p e r t u r b a -  
t ion in a F o u r i e r  s e r i e s ,  we can speak  of wave d i spe r s i on .  In the given case  the sma l l  pe r tu rba t i on  ve lo-  
c i ty  depends on the ra t io  ~0 (X, t) = S(X,t)/ /(X,t) .  Examin ing  the p r o c e s s  a t  a defini te  t ime ,  we wr i te  Eq. 
(5) in a f o r m  that  co inc ides  with tha t  of a homogeneous  wave equat ion:  

0 2 l - - (  Kgv ) O~l (6) 

Ot2 9v § 9L �9 OX2 
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Fig. % Schematic of injector .  1) Steam nozzle; 2) liquid nozzle; 
3) mixing chamber ;  4) d ivergent  channel; I) cooling-l iquid entry .  

The smal l  per turba t ion  propagat ion veloci ty  is the re fo re  

/ 

Inasmuch as 
prp# 

dP 

dp" 
1 + ~y2 (7) 

we ul t imate ly  obtain 
" \2  

P I dp" C 2 = 
i + ~y: 

The value of the der iva t ive  dP / dp"  is known for  mos t  gases  and vapors  under the condition of an 
adiabatic  p roces s  in the per turbat ion  wave.  

Applying the C I a p e y r o n - C l a u s i u s  equation dP/dT~rp  " /T  and the equation of s tate  P =p" RT to the 
vapor  phase,  we have 

(8) 

dP r 
- -  = ( 9 )  

dp" r 

R T  

It  is impor tan t  to note that the values calculated for the der iva t ive  dP/dp" accord ing  to Eq. (9) and 
for  an adiabatic  p roces s  [3] do not d i f fer  by more  than 2 or  3%. 

Despi te  the fact that  Eq. (8) was obtained for a two-phase  medium having a drop s t ruc tu re ,  i .e. ,  under 
the condition that  fi (volume ra t io  of the vapor  to the liquid phase) is c l ea r ly  g r e a t e r  than unity, i t  is neve r -  
the less  ins t ruc t ive  to analyze the  var ia t ion of the quantity C over  the ent i re  range of var ia t ion  of the m o i s -  
ture  content. 

Applied to s team,  this ana lys is  r evea l s  that for a t e m p e r a t u r e  of 50~ ~ = 1, and/3 ~1 the smal l  pe r -  
turbat ion veloci ty  has a min imum equal to 7.5 m / s e c .  In the d ry  vapor  region C 2 =dP/dp" ,  and inthe liquid 
region C =~ ;  this resu l t  is a consequence of the p resumed  incompress ib i l i t y  of the liquid phase.  

Consequently,  the t r a n s f e r  of momentum between the drops  and gaseous  medium in which the p e r t u r -  
bat ions a r e  ac tual ly  propagat ing tends to reduce the i r  ve loci ty  due to the inc rease  in the iner t ia l  p rope r t i e s  
of the medium.  The re fo re ,  in the exit  flow of wet s t e am f rom a Laval  nozzle  the veloci ty  of the vapor  
phase mus t  be equal to the smal l  per turbat ion  veloci ty  in the c r i t i ca l  (minimum) c r o s s  sect ion of the nozzle,  
accord ing  to Eq. (8). 

Fo r  a sufficiently large p r e s s u r e  di f ferent ia l  in the d ivergent  par t  of the nozzle the vapor  phase velo-  
ci ty can in a cer ta in  c r o s s  section exceed the veloci ty  of sound, which is equal to ~f(dP/dp"). 

The init ial  assumpt ions  enable us to de te rmine  analyt ica l ly  the p a r a m e t e r s  of s t e am flowing along a 
Laval  nozzle.  We make use of the conservat ion  equations der ived for  two-phase  media  in [4]. 

If we a s s u m e  that  the re  a r e  no phase t rans i t ions ,  i .e. ,  that y =const ,  then the following equations 
a r e  required  in addition to the C l a p e y r o n -  Clausius and s tate  equations:  
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Fig. 3. Variat ion of the t e m p e r a t u r e  (curves 1-3) and 
the co r respond ing  specif ic  volume of the vapor  phase 
(4-6) along a nozzle ve r su s  the vo lumet r ic  flow of 
vapor  ( T i n ~  V i n m 3 / k g ;  L i n m m ) .  1, 6) G"=0 .0075  
kg / sec ;  2,5) 0.012; 3,4) 0.02 kg / sec .  

1) the equation of s tate  in in tegra l  fo rm 

G - Fp"u"(1 + g*) 

in which ~ = y*p" /O O' denotes the obstruct ion fac tor  of the drop channel; 
is much g r e a t e r  than the vapor  phase density,  we a s s u m e  he re ina f t e r  that ~ = 0; 

2) the equation of motion 

2 (1 --Ym) pu"du" @ 2gmgu'du' r [(U-)2 (1 - -  y.~) 

3) the phase in teract ion equation 

clu' o" (~)2 

(lO) 

since the liquid densi ty 

(11) 

(12) 

in which 

C d = C~ Re-~ u ~ u" - -  u'. 

According to published data [4, 5], the coeff icient  C i can be a s sumed  to be equal to 12.5. 

The assumpt ion  of a constant  effect ive mois tu re  content along the nozzle is admit tedly  r a the r  coa r se .  
However ,  our  sole purpose  in the given analys is  is to compare  the veloci ty  of the phases  in the c r i t i ca l  
sect ion with the sma l l  per tu rba t ion  propagat ion veloci ty  calculated according  to (8), which involves the mass  
r a t h e r  than the effect ive mois tu re  content, so the stated assumpt ion  does not affect  the final resu l t s .  

Equations (10), (11), and (12) were  solved numer i ca l ly  on a digital compute r  by the R u n g e - K u t t a  
method for var ious  initial values  of y and a constant  drop d iamete r .  The resul t s ,  which a r e  given in Fig. 1, 
indicate that  the number  M, defined as the ra t io  of the vapor  phase veloci ty  to the smal l  per turba t ion  velo-  
ci ty calcula ted accord ing  to (8), is equal to unity in the c r i t i ca l  sect ion.  The coeff icient  ~0 is then a s sumed  
to be equal to unity, and the value of dP/dp" is calcula ted according  to (9). An analogous resu l t  is obtained 
for  any se lec ted  drop d i ame te r .  

879 



15oi 

IOO 
! 

50 
0 

o f 

x 2 
~ 3  

X X  x 

20 ~0 50 ~u m 

Fig. 4. Small perturbation propagation velo- 
city in a two-phase  medium (m/see) .  1) Ex- 
pe r imenta l  points; 2) calculated f lo ra  noz~,le); 
3) theore t ica l  dependence [Eq. (8)]. 

The foregoing theore t ica l  conclusions were  
co r robora t ed  exper imenta l ly  in a t es t  of a s t e am in- 
jec tor ,  i l lus t ra ted  schemat ica l ly  in Fig. 2. I t  cons is t s  
of a convergent  nozzle having a long (120 mm) cylind- 
r i ca l  par t ,  plus a mixing c h a m b e r  into which the cold 
liquid f rom the divergent  channel is admit ted.  The 
ra t io  of the length of the cyl indr ica l  par t  of the nozzle 
to i ts  inside d i ame te r  is twelve.  We measu red  the va-  
por and cold liquid flows, the p r e s s u r e  and t e m p e r a -  
ture  a t  the en t ry  and exit  of the in jector ,  and, using a 
movable thermocouple  set  up on the axis  of the through- 
flow section,  the t e m p e r a t u r e  at  any point of the nozzle.  
Also, we measu red  the flow p r e s s u r e  along the nozzle 
a t  three  check points. Under any conditions the p r e s -  
sure  at  these points cor responded  within 1 or  2% to the 
sa tura t ion t e m p e r a t u r e  measu red  with the movable 
thermocouple .  

Cha rac t e r i s t i c  curves  of the t e m p e r a t u r e  on the 
nozzle axis  according  to the movable thermocouple  data and the cor responding  curves  of the specif ic  vol-  
umes of sa tura ted  s t eam a re  shown in Fig. 3. 

The abrupt  drop in t e m p e r a t u r e  to the t e m p e r a t u r e  in the mixing chambe r  over  a length of 20 to 30 
m m  in the end par t  of the nozzle is typical  of all  se t s  of conditions. A calculat ion of the vapor  phase velo-  
ci ty in the nozzle exit  section according  to these data yields  a supersonic  reg ime with r e spec t  to the vapor  
phase.  

The re fo re ,  taking into account  the cyl indr ica l  shape of the nozzle,  in the calculat ions we a s s u m e  that  
the vapor  phase veloci ty  at  the nozzle exit  is equal to the local veloci ty  of sound. Plotting the curve  of the 
specif ic  volume var ia t ion of the vapor  along the nozzle makes  it  possible  to de te rmine  the s i te  at  which this 
quantity begins to change abrupt ly .  

As apparen t  f rom Fig. 4, the vapor  phase veloci ty  at  that  site turns  out to be equal to the smal l  pe r -  
turbat ion veloci ty  accord ing  to Eq. (8). 

Returning to the analys is  of the curves  of Fig. 3, we mus t  point out that  the behav io r  of the vapor  
phase at  the end of the nozzle a t tes t s  to the fact that  the ra re fac t ion  wave front propagat ing u p s t r e a m  f rom 
the mixing chamber  is indist inct  and is s i tuated at  a length of about 20 to 30 m m .  

The analyt ical  descr ip t ion  of the given effect,  which is a s soc ia ted  with the drop  s t ruc tu re  of the flow, 
is based  on the fact that  in the course  of propagat ion the momentum of the pe r tu rba t ionwave  d e c r e a s e s  uni- 
fo rmly  due to mechanica l  in teract ion with the drops .  The mechanica l  in teract ion length can be roughly 
de te rmined  by analogy with the propagat ion of light in a dust a tmosphe re .  

We cons ider  a t w o - p h a s e  layer  of unit a r ea  between the coordinates  Z and Z +dZ.  This  layer  contains 
NdZ drops .  Let  the momentum q acquired  by a drop be d i rec t ly  propor t ional  to i ts  middle c r o s s  sect ion 
(q = ~Sd). Then in the layer  dZ momentum t r a n s f e r  takes  place,  equal to 

dq = q~V(zSa4Z. 

F r o m  this relat ion,  integrat ing,  we obtain 

~ q  = exp (--  gaSdZ ). (13) 
qo 

Relat ion (13) de t e rmines  the behav io r  of the flow p a r a m e t e r s  in the end sect ion of the nozzle.  The 
coeff icient  ~ can be de te rmined  exper imenta l ly  f rom the curves  of Fig. 3. 

For  approximat ive  calculat ions we can find the mechanica l  in teract ion length on the bas i s  of s t r a igh t -  
forward  a rguments .  

Let  the ent i re  momentum of the per turbat ion  wave be acqui red  by the drops  over  a length L. In the 
two-phase  medium we separa te  out a cyl inder  of length L and base  a r e a  F. Then the volume LF  contains 
NLF drops .  Let  the total  a r e a  of the middle c r o s s  sect ions of all  the drops  be equal to F at  the length L, 
i .e. ,  let 
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SdNLF = F, 

whence  

L = __I (14) 
SdN 

I n s e r t i n g  the va lue  of N, equa l  to 
p. g.~ 

N -- md 1 - -  y~ 
1 ~d~p' 1 ~J~p''a~ 
6 ~- 

in to  e x p r e s s i o n  (14)and  t r a n s f o r m i n g  a p p r o p r i a t e l y ,  we obta in  

L 2 - Vu' Fn .--.41 (15) 
3 G" y 

If we a s s u m e  that  the d i a m e t e r  and ve loc i ty  of the d rops  r e m a i n  i n v a r i a n t  over  the length L, we can 
use  the e x p e r i m e n t a l  data to ca l cu l a t e  the m e c h a n i c a l  i n t e r a c t i o n  length.  F o r  example ,  in the case  of 
cu rve  3 of Fig.  3 we have L = 12 m m  for d d = 0.06 m m .  Th i s  e s t i m a t e  i m p l i e s  o r d e r - o f - m a g n i t u d e  a g r e e -  

m e n t  with e x p e r i m e n t .  
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N O T A T I O N  

IS the s m a l l  p e r t u r b a t i o n  propaga t ion  ve loc i ty ;  
IS the p r e s s u r e ;  
i s  the to ta l  d e n s i t y  of the m e d i u m ;  
is  the t ime ;  
IS the coord ina t e ;  
is  the a n a l y t i c a l  g e o m e t r i c  vo lume;  
IS the l iquid m a s s ;  
i s  the vapor  m a s s ;  
i s  the l iquid to vapor  m a s s  r a t io  in the a n a l y t i c a l  vo lume;  
is  the l iquid dens i ty ;  
is  the vapor  dens i ty ;  
i s  the abso lu te  t e m p e r a t u r e ;  
i s  the gas cons tan t ;  
i s  the phase  t r a n s i t i o n  heat ;  
is  the d rop  m a s s ;  
i s  the m a s s  flow of wet vapor ;  
IS the channe l  c r o s s  sec t ion ;  
IS the vapor  phase ve loc i ty ;  
i s  the l iquid phase ve loc i ty ;  
is  the s l ip  fac tor ;  
i s  the effect ive  m o i s t u r e  con ten t  r e l a t ive  to the v o l u m e t r i c  vapor  flow; 
IS the m a s s  flow of m o i s t u r e ;  
IS the Reynolds  n u m b e r  for  flow pas t  a drop;  
is  the d rop  d i a m e t e r ;  
is the vapor  k inema t i c  v i s c o s i t y ;  
is  the midd le  c r o s s  s ec t ion  of a drop;  
is  the coo rd ina t e  co inc id ing  with the nozzle  axis ;  
i s  the p e r t u r b a t i o n  wave m o m e n t u m  pe r  un i t  c r o s s  sec t ion ;  
is  the nozzle  ex i t  c r o s s  sec t ion ;  
IS the v o l u m e t r i c  vapor  flow; 
is  the r e l a t i v e  nozzle  c r o s s  s ec t ion .  

i~ 
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